Two proposals for robust PCA using semidefinite programming
نویسندگان
چکیده
منابع مشابه
Two proposals for robust PCA using semidefinite programming
The performance of principal component analysis (PCA) suffers badly in the presence of outliers. This paper proposes two novel approaches for robust PCA based on semidefinite programming. The first method, maximum mean absolute deviation rounding (MDR), seeks directions of large spread in the data while damping the effect of outliers. The second method produces a low-leverage decomposition (LLD...
متن کاملA Direct Formulation for Sparse PCA Using Semidefinite Programming
Given a covariance matrix, we consider the problem of maximizing the variance explained by a particular linear combination of the input variables while constraining the number of nonzero coefficients in this combination. This problem arises in the decomposition of a covariance matrix into sparse factors or sparse PCA, and has wide applications ranging from biology to finance. We use a modificat...
متن کاملRobust Anomaly Detection Using Semidefinite Programming
This paper presents a new approach, based on polynomial optimization and the method of moments, to the problem of anomaly detection. The proposed technique only requires information about the statistical moments of the normal-state distribution of the features of interest and compares favorably with existing approaches (such as Parzen windows and 1-class SVM). In addition, it provides a succinc...
متن کاملRobust Semidefinite Programming∗
In this paper, we consider semidefinite programs where the data is only known to belong to some uncertainty set U . Following recent work by the authors, we develop the notion of robust solution to such problems, which are required to satisfy the (uncertain) constraints whatever the value of the data in U . Even when the decision variable is fixed, checking robust feasibility is in general NP-h...
متن کاملA robust algorithm for semidefinite programming
Current successful methods for solving semidefinite programs, SDP, are based on primal-dual interior-point approaches. These usually involve a symmetrization step to allow for application of Newton’s method followed by block elimination to reduce the size of the Newton equation. Both these steps create ill-conditioning in the Newton equation and singularity of the Jacobian of the optimality con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2011
ISSN: 1935-7524
DOI: 10.1214/11-ejs636